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The early nonlinear phase of Rayleigh-Taylor growth is typically described in terms of the classic Layzer
model in which bubbles of light fluid rise into the heavy fluid at a constant rate determined by the bubble radius
and the gravitational acceleration. However, this model is strictly valid only for planar interfaces and hence
ignores any effects that might be introduced by the spherically converging interfaces of interest in inertial
confinement fusion and various astrophysical phenomena. Here, a generalization of the Layzer nonlinear
bubble rise rate is given for a self-similar spherically converging flow of the type studied by Kidder. A simple
formula for the bubble amplitude is found showing that, while the bubble initially rises with a constant velocity
similar to the Layzer result, during the late phase of the implosion, an acceleration of the bubble rise rate
occurs. The bubble rise rate is verified by comparison with numerical hydrodynamics simulations.
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Applications in inertial confinement fusionsICFd and a
variety of astrophysical phenomena have motivated intensive
investigations of the Rayleigh-TaylorsRTd instability, the un-
stable acceleration of a heavy fluid by a light fluidsf1g and
references thereind. The early nonlinear stage of the RT in-
stability has traditionally been described in terms of the
Layzer modelf2g in which bubbles of light fluid rise into the
heavy fluid with a constant velocity while spikes of heavy
fluid fall into the light fluid with constant acceleration. While
Layzer’s model simply and quite accurately describes the
nonlinear phase of RT growth prior to turbulent mixing, it is
strictly valid only for planar fluid interfaces. Given that
many applications involve either spherically converging or
diverging flows, it is relevant to consider how the nonlinear
growth phase might be modified at a spherical interface. Ex-
tensive numerical modeling of instability growth on spheri-
cal interfaces has been performed, e.g.,f3g, but without a
theoretical foundation similar to that provided in the planar
case by the Layzer model. Here an analytical calculation of
the bubble rise rate is presented for the spherically conver-
gent RT instability. Convergence is shown to enhance non-
linear RT growth compared to the planar case. Beyond re-
vealing this important physical effect and the scaling
properties introduced by sphericity, uncovering the spherical
analogue of the Layzer model also provides a rigorous and
relevant potential test problem for hydrodynamics simula-
tions of spherical flows.

The Layzer model treats the confining effect of neighbor-
ing RT bubbles as an effective cylindrical boundary condi-
tion enclosing a rotationally symmetric central bubble. The
corresponding spikes of heavy fluid run down the cylindrical
walls. Considering an incompressible and irrotational flow,
the fluid velocity may be described as the gradient of a po-
tential functionf given by a solution of Laplace’s equation.
For a light fluid of infinitesimal densitysAtwood number of
A=1d, the boundary conditions on the bubble surface are
that the pressure be uniform and that the interfacesdenoted

by S=0 belowd move with the flow. The remaining boundary
conditions are that the fluid be at rest at infinity and that
there be no flow through the cylindrical walls. A consider-
able simplification is possible for the planar problem: Since
the bubble risesa posteriori with a constant velocity, it is
convenient to transform the problem to a frame moving with
the bubble so that the flow near the bubble apex is static. By
keeping only the lowest order mode in the expansion of the
velocity potential in this frame and expanding the Bernoulli
integral on the bubble surface to second order in the radial
distance from the cylindrical axis, a solubility condition of
this equation gives the bubble velocity asu.Îg r0/k0. Here,
g is the inertial acceleration of the interface or an effective
gravitational acceleration,r0 is the bubble radius or pertur-
bation wavelength, andk0 is the first root of the Bessel func-
tion J1. Since this solution includes only the lowest mode of
the velocity potential and is carried only to second order in
the distance from the axis, only the flow near the axis is
described and not the behavior of the spikes near the walls.
Nevertheless, the theoretical value foru compares quite fa-
vorably with numerical simulations and experimental mea-
surements. The effects of compressibility, bubble merging,
density gradients,A,1, Kelvin-Helmholtz roll up, etc., are
not included in the model.

To adapt Layzer’s model to spherical interfaces, the first
modification is to replace the cylindrical coordinates and
boundary conditions by spherical coordinates and conical
boundary conditions to capture the lowest order effect of
spherical convergence. The problem is immediately compli-
cated by this modification in that the bubble no longer rises
with a constant velocity and transforming to a frame where
the flow near the bubble apex is static is no longer trivial.
The calculation must then be carried through for a time-
dependent flow and a time-evolving interface. Indeed, calcu-
lating the rate of rise of a bubble enclosed by a narrow cone
opening downward in a uniform gravitational field shows
that the bubble nonlinearly decelerates as it rises. This result
comports with the Layzer model in that, as the bubble rises,
the effective radius enclosing the bubble shrinks and the
bubble must then rise at an ever slower velocity according to
the Layzer formula.*Electronic address: clark90@llnl.gov
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More importantly, however, a uniform gravitation field is
no longer precisely equivalent to a uniform acceleration on a
spherical interface. A uniform gravitational field in the
spherical case is the equivalent of setting the entire sphere
into accelerated motion which is not relevant to the instabili-
ties of the imploding interface. In place of a uniform gravity,
one consistent representation of an accelerated spherical in-
terface is to consider the growth of perturbations in a spheri-
cal coordinate system accelerating smoothly toward the ori-
gin, i.e., transform to asprimedd frame moving with respect
to the fixed sunprimedd frame according tohr8=r /hstd, u8
=u, t8= tj. Herehstd is the scale factor describing the radial
contraction of the primed coordinates with respect to the
unprimed coordinates. The character of this transformation is
readily identified with that of a self-similar spherically con-
verging flow, and the notation is motivated in connection
with the flow studied by Kidderf4g. Under this transforma-
tion, the velocity potential, Bernoulli’s equation, and the
equation of motion for the bubble surfaceS become
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Here subscripts denote partial differentiation, dots denote to-
tal derivatives with respect to time, andFst8d andFst8d are
arbitrary functions of time. The inertial terms appearing in
the Bernoulli integral play the role of gravitational potentials
in the interface frame but correctly incorporate the spherical
nature of the flow. Consistent with the spherical convergence
of the flow, compressibility of the fluid is allowed in this
model withg the usual ratio of specific heats. This is a dis-
tinction from the incompressible Layzer model. Forbidding
compressibility in converging flowssas in the linear model
of Plessetf5gd, necessitates unphysical singularities of the
velocity field atr =0.

To develop an analog of Layzer’s analysis, we solve these
equations in a second-order neighborhood of the bubble apex
si.e., toOsu2d in spherical polar coordinates aligned with the
bubbled and include only the lowest order mode in the ex-
pansion of the velocity potential in the interface frame. The
velocity potential ansatz in the primed frame in spherical
coordinates is

f8 = Ast8dsr8dnPnscosu8d

⇔f = −
r2

2

ḣ

h
+ ÃstdrnPnscosud. s2d

Here Astd is the time-dependent nonlinear perturbation am-
plitude to be determined andn is the spherical mode number
determined by the boundary condition that there be no flow
through the cone walls. The functionFst8d can be incorpo-
rated intoFst8d without loss of generality. Note that in the

fixed sunprimedd frame, the velocity potential is separated
into a compressible component determined by the back-
ground spherically converging flow and an incompressible
nonlinear perturbation. In the primed frame, however, the
flow is by construction incompressible. Such a separation
was initially discussed by Book and Bernsteinf6g in an
analysis of the linear growth of perturbations on a self-
similar implosion.

Characterizing the bubble in the moving frameshence-
forth dropping the primesd by S=Rsu ,td−r, with Rsu ,td
=astd+bstdu2+Osu4d and substituting the chosenf into the
last of Eqs.s1d yields

0 = St − ¹W f ·¹W S= ȧ + nAan−1 + u2Hḃ + nsn − 1dAan−2b

+ nsn + 1dAan−2b −
n2sn + 1d

4
Aan−1J + Osu3d.

Requiring a solution at the first two orders inu determines
the perturbation amplitudeAstd and the bubble curvaturebstd
in terms of the bubble amplitudeastd

A = −
1
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Consistent with the self-similarity of the background flow,
the bubble shape at second order is found to have a separable
dependence in angle and time,

Rsu,td = astdH1 +
n

4
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2n − 1
u2J + Osu4d. s3d

Since the RT perturbation of the velocity potential is in-
compressible, the fluid density evolves only due to the radi-
ally compressing component of the flow

r = expE dt¹2f = r0srW0dh−3std,

wherer0srW0d is the Lagrangian value of the fluid density, i.e.,
density of the fluid particle at its initial location, and
the integral is computed along the Lagrangian trajectory
of the fluid particle. For an isentropic implosion, also
p=p0srW0dfr /r0srW0dgg. Substituting the above results for
Astd ,bstd ,r, andp into the Bernoulli integral on the interface
S=0 sagain in the moving framed and expanding toOsu2d
leads at the lowest orders inu to two coupled equations for
the implosion scale factorhstd and bubble amplitudeastd
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ȧ2 + 2

ḣ
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The constantsR0 and tc set the length and time scales of the
implosion.
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In principle, theOsu2d equation should be solved forastd
as a functional ofhstd, and the result substituted into the
Osu0d equation to find a single self-consistent solution for
hstd. Such an exact solution to Eqs.s4d could not be found.
However, theOsu2d equation from Eqs.s4d may in general
be put in Schrödinger form and, for a given slowly evolving
hstd, the approximate bubble amplitude calculated by the
WKB method

astd , h1/sn−3/2dexpH2LsndEt

dtÎ− ḧ/hJ ,

with Lsnd8Îns3−2nd /2s1−nd−1/s3−2nd. This expression
for astd could be substituted into theOsu0d equation, and an
iterative approximation forhstd developed. A more tractable
approach is to note that, in the limit of largen, the Osu0d
equation reduces to Kidder’s equation for the scale factor of
an unperturbed self-similar implosionf4g. Specializing to the
case of n@1, it is then acceptable to approximateh
.hKidder. For g=5/3, the Kidder scale factor ishstd
=Î1−st / tcd2 with tc the time of total collapse to the origin of
the unperturbed flow. Hence

astd , R0h
1/sn−3/2dS1 + t/tc

1 − t/tc
D−1/2În

, n → `. s5d

Here the location of the bubble apex has been initialized to
the outer radius of the sphereR0 for the unperturbed prob-
lem. Note that, as in the unperturbed one-dimensional implo-

sion studied by Kidder, the scale factor of the implosionhstd
cannot be arbitrarily specified to generate any desired accel-
eration history butsdue to the self-similar symmetry as-
sumed for the flowd must be self-consistently determined by
the boundary conditions and the perturbation historyastd via
Eqs.s4d. Though this allows only a specific acceleration his-
tory hstd for the spherical interfacesapproaching that of Kid-
der in the limit ofn@1d, this constraint appears hardly more
restrictive for potential applications than the assumption of a
constant, uniform gravity is in applying the Layzer model for
planar interfaces.

As should be expected, in the limitn→` si.e., for narrow
conesd and for early timest / tc!1 sbefore significant conver-
gence has occurredd, the bubble height in the moving frame
and the bubble curvature reduce to those given by the Layzer
model
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These results can be connected to the Layzer formulae by
using the asymptotic formPnscosud,J0(s2n+1dsinsu /2d),
n→` from which follows n,k0/b for b. r0/R0 the half-
angle of the cone andr0 its effective radius. In these units,

the initial acceleration of the interface isḧs0d=R0/ tc
2.

Interestingly, the formula found for the bubble amplitude
is functionally similar to the result earlier found by Kidder
f7g for the linear growth of perturbations during a homoge-
neous implosion. However, these resultssthe former for the
distance of the bubble apex from the center of the implosion
and the latter for the linear regime amplitude of a single
mode perturbation on the outside of the imploding sphered
differ crucially in the exponent’s dependence on the mode
number: during the linear regime, the exponent scales as the
square root of the perturbation mode number while as the
reciprocal of the square root of the mode number during the

FIG. 1. sColord Snapshots of bubble growth from aHYDRA

simulation forn=80. Red denotes the dense fluid and blue the low-
density pusher. To illustrate the bubble evolution, each snapshot is
centered vertically about the location of the bubble apex at the
corresponding time. Near the axis of the cone, the computed bubble
curvature agrees well with the theoretical predictionfEq. s3dg
shown as the thick dark line.

FIG. 2. Comparison of normalized bubble heights in the frame
moving with the interface from theHYDRA simulation of Fig. 1, the
WKB solution fEq. s5dg, the result of numerically integrating Eqs.
s4d, and the Layzer prediction. Results withn=20 are also shown.
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nonlinear regime. Both cases are analogous to the mode
number scalings for a planar interface. The method of calcu-
lating the bubble amplitude via the WKB technique is also
superficially similar to that followed by Hattoriet al. f8g, but
again this latter calculation applies only to the linear regime,
and the scaling with mode number is reciprocated.

Equation s5d was verified by comparing with two-
dimensional arbitrary Lagrangian-EuleriansALEd hydrody-
namics simulations run with theHYDRA codef3g. For a given
mode numbern, a simulation was initialized with slip bound-
ary conditions on the cone walls and a Kidder-type pressure
source applied through a low density pusher materialsap-
proximatingA=1d to the fluid interface. The radial density
profile within the dense fluid was initialized as prescribed by
Kidder f4g, and the interface was nonlinearly perturbed in
accordance with the initial second order bubble shape, Eq.
s3d. Considerable ALE relaxation of the mesh was required
throughout the simulation. Care also had to be taken in ini-
tializing the proper fluid velocities according to the velocity
potential Eq.s2d sin the fluid as well as the low density
pusher materiald.

An example sequence of snapshots of bubble growth from
a simulation withn=80 is shown in Fig. 1. The dense fluid is
shown in red and the low-density pusher appears in blue.
Mixing of the fluids due to the ALE relaxation of the mesh
results in the yellow-colored boundary zones. The second-
order bubble shapesas imposed att=0d is denoted by the
dark line. Throughout the simulation, the interface curvature
at the bubble apex appears to be in good agreement with the
theoretical prediction. Similar results were found for the
range of mode numbersn=20–160. Since the theory is valid
only to Osu2d the growth of the spike along the wall of the
cone is not captured. A perfectly analogous discrepancy ap-

plies for the description of spikes in the Layzer model.
Figure 2 illustrates the normalized bubble height as mea-

sured from Fig. 1 in comparison with the WKB solutionfEq.
s5dg, the result of numerically integrating Eqs.s4d, and the
Layzer prediction. The result of a simulation withn=20 is
also shown. Following initially linear growth with time, the
HYDRA, numerical, and WKB results all demonstrate sub-
stantially faster bubble growth than predicted by the Layzer
model. Good agreement between the simulation results and
the theoretical expectations is seen through most of the im-
plosion. With increasingn, closer agreement between the
WKB and numerical solutions is seen for allt / tc. Also as
predicted by Eq.s5d, greater acceleration of the bubble ve-
locity over the Layzer prediction was observed for lower
values ofn.

In summary, a nonlinear RT bubble model has been pre-
sented for a spherically converging flow. Consistently de-
scribing an accelerating, spherically converging interface re-
quired assuming a Kidder-type self-similar background flow
within a conical boundary in place of the uniform gravity
and cylindrical boundaries assumed in the Layzer model. An
approximate solution was found for the growth of the bubble
height indicating an initial phase with linear growth in time
at the rate predicted by Layzer followed by a strong accel-
eration of the bubble growth rate late in the implosion. Good
agreement for the bubble growth rate and curvature at the
apex was found by comparison with two-dimensional hydro-
dynamics simulations.
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